Optimizing DevOps Workflows for Large-Scale Oracle Database Deployments

Authors

  • Raghu Murthy Shankeshi Sr. MTS , Oracle America Inc., Virginia, USA Author

Keywords:

DevOps, Oracle Database, CI/CD, Automation, Infrastructure as Code

Abstract

Organizations must adopt DevOps strategies to handle infrastructure database updates because it enhances the performance and scalability and reliability of big Oracle database installations. The standard database management system demonstrates two main issues because manual setup procedures combine with long-deployment durations that generate additional errors and reduce development operational efficiency. The research investigates DevOps workflows as they apply to Oracle database deployment through study of automation and continuous integration/continuous deployment (CI/CD) and infrastructure as code (IaC).The investigation examines DevOps-based Oracle database workflows to reveal typical operational issues affecting standard deployment frameworks while demonstrating the role of automated deployment pipelines and versioned database migration systems and real-time system status checks for expense reduction in deployment duration together with system malfunctions. The examination details four standard DevOps instruments namely Terraform, Ansible, Jenkins and Liquibase to present their functionality in developing automated systems which perform database provisioning and schema alteration alongside security compliance automation. Standard development processes need between 50% and 70% additional resources for deployment operations but DevOps decreases mistakes by around 75%. This analysis reveals organization benefits from the enhanced ease of their database expansion features and they gain improved uptime monitoring through rapid fallback procedures for quick recovery. Through the analysis organizations obtain solutions for security risks and compliance requirements along with organizational barriers to pave the way for DevOps deployment. This research provides established procedures through detailed steps allowing firms to transition their database administration from traditional practices to automatic DevOps delivery platforms. The post-study results function as an effective database implementation guide for organizations that want to optimize their Oracle database structure.

Downloads

Download data is not yet available.

References

1. Barisits, M., Beermann, T., Berghaus, F., Bockelman, B., Bogado, J., Cameron, D., Christidis, D., Ciangottini, D., Dimitrov, G., Elsing, M., Garonne, V., Di Girolamo, A., Goossens, L., Guan, W., Guenther, J., Javurek, T., Kuhn, D., Lassnig, M., Lopez, F., . . . Wegner, T. (2019). Rucio: Scientific Data Management. Computing and Software for Big Science, 3(1). https://doi.org/10.1007/s41781-019-0026-3

2. Erder, M., & Pureur, P. (2016). Continuous architecture and continuous delivery. In Elsevier eBooks (pp. 103–129). https://doi.org/10.1016/b978-0-12-803284-8.00005-1

3. Ganguly, S., Consul, A., Khan, A., Bussone, B., Richards, J., & Miguel, A. (2016). A Practical Approach to Hard Disk Failure Prediction in Cloud Platforms: Big Data Model for Failure Management in Datacenters. Researchgate, 105–116. https://doi.org/10.1109/bigdataservice.2016.10

4. Hillah, L. M., Maesano, A., De Rosa, F., Kordon, F., Wuillemin, P., Fontanelli, R., Di Bona, S., Guerri, D., & Maesano, L. (2016). Automation and intelligent scheduling of distributed system functional testing. International Journal on Software Tools for Technology Transfer, 19(3), 281–308. https://doi.org/10.1007/s10009-016-0440-3

5. Tsai, W., Wu, W., & Huhns, M. N. (2014). Cloud-Based software crowdsourcing. IEEE Internet Computing, 18(3), 78–83. https://doi.org/10.1109/mic.2014.46

6. Drogseth, D. N., Sturm, R., & Twing, D. (2015a). Closing the Gap. CMDB Systems, 257–273. https://doi.org/10.1016/b978-0-12-801265-9.00013-5

7. Drogseth, D. N., Sturm, R., & Twing, D. (2015b). Technology Selection. Elsevier EBooks, 219–253. https://doi.org/10.1016/b978-0-12-801265-9.00012-3

8. El-Kassabi, H. T., Adel Serhani, M., Dssouli, R., & Navaz, A. N. (2019). Trust enforcement through self-adapting cloud workflow orchestration. Future Generation Computer Systems, 97, 462–481. https://doi.org/10.1016/j.future.2019.03.004

9. Garousi, V., Felderer, M., & Kılıçaslan, F. N. (2019). A survey on software testability. Information and Software Technology, 108, 35–64. https://doi.org/10.1016/j.infsof.2018.12.003

10. Kiss, T., Kacsuk, P., Kovacs, J., Rakoczi, B., Hajnal, A., Farkas, A., Gesmier, G., & Terstyanszky, G. (2019). MiCADO—Microservice-based Cloud Application-level Dynamic Orchestrator. Future Generation Computer Systems, 94, 937–946. https://doi.org/10.1016/j.future.2017.09.050

11. Kumar, R., & Goyal, R. (2020). Modeling continuous security: A conceptual model for automated DevSecOps using open-source software over cloud (ADOC). Computers & Security, 97, 101967. https://doi.org/10.1016/j.cose.2020.101967

12. Lonetti, F., & Marchetti, E. (2018). Emerging Software Testing Technologies. Advances in Computers, 91–143. https://doi.org/10.1016/bs.adcom.2017.11.003

13. Makki, M., Van Landuyt, D., Lagaisse, B., & Joosen, W. (2018). A comparative study of workflow customization strategies: Quality implications for multi-tenant SaaS. Journal of Systems and Software, 144, 423–438. https://doi.org/10.1016/j.jss.2018.07.014

14. Risco-Martín, J. L., & Mittal, S. (2019). Model Management and Execution in DEVS Unified Process. https://doi.org/10.1016/b978-0-12-813543-3.00014-7

15. Steinwandter, V., Borchert, D., & Herwig, C. (2019). Data science tools and applications on the way to Pharma 4.0. Drug Discovery Today, 24(9), 1795–1805. https://doi.org/10.1016/j.drudis.2019.06.005

16. Wang, S., Zhong, Y., & Wang, E. (2019). An integrated GIS platform architecture for spatiotemporal big data. Future Generation Computer Systems, 94, 160–172. https://doi.org/10.1016/j.future.2018.10.034

17. Woodhead, R., Stephenson, P., & Morrey, D. (2018). Digital construction: From point solutions to IoT ecosystem. Automation in Construction, 93(1), 35–46. https://doi.org/10.1016/j.autcon.2018.05.004

18. Barisits, M., Beermann, T., Berghaus, F., Bockelman, B., Bogado, J., Cameron, D., Christidis, D., Ciangottini, D., Dimitrov, G., Elsing, M., Garonne, V., di Girolamo, A., Goossens, L., Guan, W., Guenther, J., Javurek, T., Kuhn, D., Lassnig, M., Lopez, F., & Magini, N. (2019). Rucio: Scientific Data Management. Computing and Software for Big Science, 3(1). https://doi.org/10.1007/s41781-019-0026-3

19. Fox, G. C., Qiu, J., Kamburugamuve, S., Jha, S., & Luckow, A. (2015). HPC-ABDS High Performance Computing Enhanced Apache Big Data Stack. 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. https://doi.org/10.1109/ccgrid.2015.122

20. Hillah, L. M., Maesano, A.-P., De Rosa, F., Kordon, F., Wuillemin, P.-H., Fontanelli, R., Bona, S. D., Guerri, D., & Maesano, L. (2016). Automation and intelligent scheduling of distributed system functional testing. International Journal on Software Tools for Technology Transfer, 19(3), 281–308. https://doi.org/10.1007/s10009-016-0440-3

21. Lemos, A. L., Daniel, F., & Benatallah, B. (2015). Web Service Composition. ACM Computing Surveys, 48(3), 1–41. https://doi.org/10.1145/2831270

22. Tsai, W.-T., Wu, W., & Huhns, M. N. (2014). Cloud-Based Software Crowdsourcing. IEEE Internet Computing, 18(3), 78–83. https://doi.org/10.1109/mic.2014.46

Downloads

Published

12-03-2021

How to Cite

Murthy Shankeshi, Raghu. “Optimizing DevOps Workflows for Large-Scale Oracle Database Deployments”. Asian Journal of Multidisciplinary Research & Review, vol. 2, no. 1, Mar. 2021, pp. 1-21, https://ajmrr.org/journal/article/view/252.

Similar Articles

1-10 of 76

You may also start an advanced similarity search for this article.